高光谱图像数据怎么分析?高光谱图像数据分析方法
发布时间:2024-03-15
浏览次数:339
高光谱成像仪在数据采集的过程中,不仅可以获取光谱信息,还可以获取图像信息。大量的信息会受到噪音、外界环境等因素的影响,因此为了提起有效的信息,就需要对高光谱图像数据进行分析。本文对高光谱图像数据分析方法做了介绍。
高光谱成像仪在数据采集的过程中,不仅可以获取光谱信息,还可以获取图像信息。大量的信息会受到噪音、外界环境等因素的影响,因此为了提起有效的信息,就需要对高光谱图像数据进行分析。本文对高光谱图像数据分析方法做了介绍。
对获取的高光谱图像进行反射率校正后,高光谱图像数据的分析方法按如下步骤进行:
1.光谱变量提取
在遥感图像处理软件中对校正后的高光谱图像选取不包含背景信息的尽可能大的感兴趣区域(ROI),再提取感兴趣区域内所有像素点的反射率光谱数据,并求得其平均光谱。依次提取所有样本的平均光谱,得到光谱数据矩阵;
2.图像纹理变量提取
高光谱图像数据立方体可看作是每个波段灰度图像的叠加,这些灰度图像包含样本丰富的空间分布属性。图像纹理反映像素的空间位置和亮度值变化,进而反映样本几何结构的变化。由于高光谱图像有上百个波段图像,不可能提取每个灰度图像的纹理变量,需要先通过主成分分析提取前几个主成分图像的纹理变量,或者先寻找最优特征波长再提取特征波长图像的纹理变量;
3.光谱数据预处理
预处理可以有效减少系统噪音、杂散光等对成像的影响,从而获取高信噪比、低背景干扰的数据。常用的光谱预处理方法有:平滑、多元散射校正、变量标准化、求导、归一化、基线校正等;
4.特征波长提取
通过选择特征波长,以降低光谱数据的维数及共线性问题,有效特征波长不仅能代表被测样本的特征,还能大大简化回归或分类运算。常用的特征波长提取方法有:回归系数法、载荷系数法、连续投影算法、无信息变量消除、遗传算法、竞争性自适应重加权算法、Random Frog等;
5.回归或分类模型的建立
用提取的特征波长光谱和纹理变量建立回归或分类模型。分类模型是判断样本的种类或类型,是定性分析。回归模型需要组分的含量信息,是定量分析。常用的化学计量学方法有:主成分分析、主成分回归、多元线性回归、偏最小二乘法、人工神经网络、最小二乘支持向量机、高斯过程等;
6.图像后处理和可视化
通过在相应的软件中编写图像处理程序,将模型预测的量化结果以伪彩图的形式展示,实现参数空间分布的可视化。
相关产品
-
高光谱遥感技术在农作物监测中的应用
高光谱遥感农业研究已经逐渐成为现代农业研究中的重点,高光谱遥感影像具有光谱连续、波段多以及数据量大等特点,可为现代农业研究提供精准的技术手段。文章以农作物监测为..
-
植被的光谱特性是什么?植被的光谱特性介绍
地物的光谱特征是高光谱识别地物或检测特征的基础,其研究和意义在高光谱检测当中具有重要地位。同样,要检测农作物的生长状况或者其他特性,需要知道相应农作物的光谱特征..
-
岩矿高光谱遥感——矿石的光谱特征
高光谱遥感探矿主要根据矿石的光谱特征进行识别与分类,经研究发现矿石的光谱特征表现在不同种类的矿石具有诊断性的特征吸收峰存在,而决定这些特征吸收峰的因素主要为:(..
-
近红外光谱(NIRS)在茶叶检测中的应用
近红外光谱主要记录有机分子中含氢基团(C-H,N-H,0-H)振动的倍频与合频吸收,这些基团产生的吸收峰特征性强,便于判定和分析,目前已广泛应用于食品、医药、农..