高光谱成像仪光谱数据的预处理方法有哪些?
发布时间:2023-11-30
浏览次数:394
高光谱成像仪在采集数据的过程中容易受到类似仪器性能、样本背景、电噪音等因素的影响,这导致获得的光谱信号受噪音的干扰。所以,在得到所有样品的原始光谱以后,需要对其进行预处理来提高光谱数据的信噪比,这也是为了更高效地挖掘光谱数据仅为保证预测模型的精度、稳定性和可靠性。那么,高光谱成像仪光谱数据的预处理方法有哪些?
高光谱成像仪在采集数据的过程中容易受到类似仪器性能、样本背景、电噪音等因素的影响,这导致获得的光谱信号受噪音的干扰。所以,在得到所有样品的原始光谱以后,需要对其进行预处理来提高光谱数据的信噪比,这也是为了更高效地挖掘光谱数据仅为保证预测模型的精度、稳定性和可靠性。那么,高光谱成像仪光谱数据的预处理方法有哪些?
S-G平滑处理法:
噪声常常干扰光谱信号,也容易在建立模型时产生过拟合的现象。平滑处理通过对平滑点周边一定窗口大小范围内的数据点进行平均或拟合处理,可以求得平滑点的最佳估计值。这样就减少了噪声对数据点的干扰,提高了信噪比。常用的平滑处理包括移动平均平滑法和卷积平滑法,卷积平滑法基于最小二乘拟合的系数来建立滤波函数,对移动窗口内的光谱进行最小二乘多项式拟合。因此与简单的平均计算相比,该算法具有较大的优势。
多元散射校正处理法:
多元散射校正能够有效消除散射的影响,进而增强和成分含量对应光谱的吸收信息。该算法首先需要建立待测样品的“理想光谱”,即光谱的变化值与样品的成分含量满足线性关系。然后,基于该“理想光谱”对其他样品的光谱进行修正。可实际应用中,获取“理想光谱”非常困难,所以常常取所有样品光谱的平均值来近似代替。相应的算法步骤如下:
(1)根据最小二乘法确定α和β值,把所有待测样品的光谱A(λ)变换成假想的基准粒度光谱A0(λ)。假设这两个参数的推定值为α'和β',根据公上式变换可得到下式:
(2)基于整体样品的平均光谱值求得α'和β'的基准粒度光谱,如下式所示:
(3)线性回归方程:
式中A表示校正集光谱数据矩阵,Ai表示第i个样品的光谱,通过最小二乘回归算法求得α和β。通过调整α和β,既可以减小光谱的差异性,又尽可能保留了原始光谱中和样品成分含量相关的有效信息。因此该算法大大提高了光谱的信噪比。
变量标准化处理方:
变量标准化可以用来校正样品间由于散射引起的光谱误差。由于每条光谱其波长点的吸光度符合一定的分布(比如正态分布),该算法每一条原始光谱值进行标准正态化处理,处理后的光谱数据均值为0,标准差为1。计算式为:Zi=(xi-μ)/σ。
式中,xi为原始光谱的吸光度,μ为所有光谱的平均值,σ为原始光谱的标准偏差。由于该算法是对每条光谱数据进行单独校正,因此对于样品间差异较大的光谱数据,采用变量标准化算法对其进行预处理十分有效。
相关产品
-
高光谱遥感技术在农作物监测中的应用
高光谱遥感农业研究已经逐渐成为现代农业研究中的重点,高光谱遥感影像具有光谱连续、波段多以及数据量大等特点,可为现代农业研究提供精准的技术手段。文章以农作物监测为..
-
植被的光谱特性是什么?植被的光谱特性介绍
地物的光谱特征是高光谱识别地物或检测特征的基础,其研究和意义在高光谱检测当中具有重要地位。同样,要检测农作物的生长状况或者其他特性,需要知道相应农作物的光谱特征..
-
岩矿高光谱遥感——矿石的光谱特征
高光谱遥感探矿主要根据矿石的光谱特征进行识别与分类,经研究发现矿石的光谱特征表现在不同种类的矿石具有诊断性的特征吸收峰存在,而决定这些特征吸收峰的因素主要为:(..
-
近红外光谱(NIRS)在茶叶检测中的应用
近红外光谱主要记录有机分子中含氢基团(C-H,N-H,0-H)振动的倍频与合频吸收,这些基团产生的吸收峰特征性强,便于判定和分析,目前已广泛应用于食品、医药、农..