高光谱成像仪高光谱图像的去噪方法有哪些?
发布时间:2023-11-24
浏览次数:476
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
目前国内外主要采用以下几种方法对高光谱图像进行去噪:
1.基于空间域滤波
由于高光谱图像是由二维图像叠加得到的立方体,在空间域上相当于将多个二维图像沿着光谱维叠加,因此在基于空间域的去噪方法中最为直接的处理方式即为分别对每个波段的图像进行去噪。但此方法没有充分利用高光谱图像的谱间相关性,因此去噪效果有限。较为常用的空间域去噪算法主要有全变分法、小波域去噪法、非局部均值法以及BM3D等。
2.基于光谱域滤波
高光谱图像中可提取出成百上千个波段信息,但基于光谱域进行图像去噪时,仅仅考虑了光谱维度,忽略了高光谱图像的空间维度的信息,因此去噪后的高光谱图像会存在一定程度的失真。最常用的光谱域去噪方法主要有最大噪声比率法和SG滤波方法。
3.基于空-谱联合去噪
该去噪方法基于高光谱图像的特性,分为变换域去噪和像素空间去噪。变换域去噪主要为小波域去噪,通过小波对图像进行变换。而像素域去噪不同,是直接对每一个二维图像的像素进行去噪。除此之外,还有直接对三维数据块去噪的方法,如BM4D"等。由于高光谱图像的低秩特性,有学者提出了基于低秩优化的去噪模型,如LRMR去噪方法等。总体而言,该去噪方法相较于前两种方法去噪性能更好,但仍没有充分利用空间信息,因此还可以探寻方法进一步提高该方法的性能。
相关产品
-
高光谱遥感技术在农作物监测中的应用
高光谱遥感农业研究已经逐渐成为现代农业研究中的重点,高光谱遥感影像具有光谱连续、波段多以及数据量大等特点,可为现代农业研究提供精准的技术手段。文章以农作物监测为..
-
植被的光谱特性是什么?植被的光谱特性介绍
地物的光谱特征是高光谱识别地物或检测特征的基础,其研究和意义在高光谱检测当中具有重要地位。同样,要检测农作物的生长状况或者其他特性,需要知道相应农作物的光谱特征..
-
岩矿高光谱遥感——矿石的光谱特征
高光谱遥感探矿主要根据矿石的光谱特征进行识别与分类,经研究发现矿石的光谱特征表现在不同种类的矿石具有诊断性的特征吸收峰存在,而决定这些特征吸收峰的因素主要为:(..
-
近红外光谱(NIRS)在茶叶检测中的应用
近红外光谱主要记录有机分子中含氢基团(C-H,N-H,0-H)振动的倍频与合频吸收,这些基团产生的吸收峰特征性强,便于判定和分析,目前已广泛应用于食品、医药、农..