什么是近红外光谱?它如何工作?
发布时间:2023-10-07
浏览次数:444
NIR 光谱或近红外分光光度法 (NIRS) 是一种吸收光谱方法,通过测量化合物或溶液吸收的近红外辐射量来帮助确定化合物或溶液的化学成分。
NIR 光谱或近红外分光光度法 (NIRS) 是一种吸收光谱方法,通过测量化合物或溶液吸收的近红外辐射量来帮助确定化合物或溶液的化学成分。顾名思义,近红外光谱在近红外电磁光谱中工作。近红外辐射波比可见光稍长,覆盖700nm至2500nm的光谱。与中波长和长波长红外辐射相比,近红外光谱不是热光谱。换句话说,近红外辐射与您从明火或太阳中感受到的热量无关。
因此,近红外辐射不是用于热成像(想想铁血战士穿过中美洲雨林跟踪阿诺德·施瓦辛格),而是出现在光纤、电视遥控器,当然还有近红外光谱中。
近红外光谱如何工作?
不同分光光度法(包括近红外光谱法)背后的主要原理是比尔-朗伯定律。根据该定律,溶液中某种化合物的浓度决定了该溶液吸收多少光(无论是可见光还是红外光)。浓度越高,吸收特定波长的辐射就越多。然而,近红外光谱法与其他光谱法的不同之处在于吸收背后的机制。
例如,在紫外-可见光谱中,化合物对可见光的吸收是根据构成化合物的电子对电磁辐射的吸收来测量的。
当电子吸收辐射时,它进入所谓的激发态,在该态中它“充电”的能量比其正常(“基”)状态更多。然而,电子不会长时间保持兴奋状态,并会在不久后衰变到基态,释放出与它们吸收的等量的能量。这个过程也称为电子跃迁。
由于不同化学元素的电子需要不同的能量才能进入激发态,因此紫外-可见光谱可以通过测量该能量来确定其性质。近红外辐射与物质具有独特的相互作用,NIRS 的工作原理有所不同。近红外辐射不是激发化学元素原子内的电子,而是影响整个分子。更具体地说,它影响分子的振动运动——使分子内的原子粘在一起的键。
当暴露于近红外辐射时,分子吸收电磁光子并启动称为振动转变的过程——拉伸、收缩、弯曲、来回摇摆等。由于这种机制,近红外光谱通常被称为振动吸收光谱。
但这种分子振动如何帮助通过近红外光谱确定物质的化学成分呢?这与分子在振动跃迁状态下的行为有关。根据构成分子的化学元素,分子将具有特定的振动模式。让我们以水分子为例。水分子由两个部分带正电的氢原子和一个部分带负电的氧原子组成。当暴露于特定频率的红外辐射时,水分子也会被以下更高能量振动模式激发:不对称拉伸,其中一个氢键收缩,而另一个氢键延伸对称拉伸,在此期间两个氢键收缩或拉伸剪式弯曲,在此过程中两个氢原子相互来回摆动,就好像它们被剪刀刺穿一样。确定分子在暴露于红外辐射时进入哪种振动模式,以及将分子激发到更高振动状态所需的辐射频率,是 NIRS 背后的工作原理。
水分子由两个氢原子和一个氧原子组成。因此,它通过氢键结合在一起,在 NIRS 过程中氢键会成为近红外波的目标。
相关产品
-
高光谱遥感技术在农作物监测中的应用
高光谱遥感农业研究已经逐渐成为现代农业研究中的重点,高光谱遥感影像具有光谱连续、波段多以及数据量大等特点,可为现代农业研究提供精准的技术手段。文章以农作物监测为..
-
植被的光谱特性是什么?植被的光谱特性介绍
地物的光谱特征是高光谱识别地物或检测特征的基础,其研究和意义在高光谱检测当中具有重要地位。同样,要检测农作物的生长状况或者其他特性,需要知道相应农作物的光谱特征..
-
岩矿高光谱遥感——矿石的光谱特征
高光谱遥感探矿主要根据矿石的光谱特征进行识别与分类,经研究发现矿石的光谱特征表现在不同种类的矿石具有诊断性的特征吸收峰存在,而决定这些特征吸收峰的因素主要为:(..
-
近红外光谱(NIRS)在茶叶检测中的应用
近红外光谱主要记录有机分子中含氢基团(C-H,N-H,0-H)振动的倍频与合频吸收,这些基团产生的吸收峰特征性强,便于判定和分析,目前已广泛应用于食品、医药、农..