高光谱成像技术图像采集系统有哪些类型?
发布时间:2023-04-28
浏览次数:639
高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比,具有更丰富的图像和光谱信息。那么,高光谱成像技术的成像原理是怎样的?高光谱成像技术图像采集系统有哪些类型?本文为大家做了介绍。
高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比,具有更丰富的图像和光谱信息。那么,高光谱成像技术的成像原理是怎样的?高光谱成像技术图像采集系统有哪些类型?本文为大家做了介绍。
高光谱成像技术的成像原理:
高光谱图像是一系列光波波长处的光学图像(光源有特定的波长),它比多光谱图像有更高的波长分辨率,通常分辨率可达到1~3nm,本论文所采用的高光谱成像系统的分辨率为1.25nm。高光谱图像数据是三维的,有时称为图像块。其中二维是图像像素的横纵坐标信息(以坐标x和y表示),第三维是波长信息(以λ表示)。例如,一个为512×512像素的图像检测器阵列在100个波长处获得样品图像信息,图像块就是512 × 512 × 100的三维阵列。本研究所采用的高光谱成像系统的像素为1344×1024,在477个波长处获得样品图像信息,图像块就是1344 × 1024 × 477三维阵列。
高光谱图像技术的硬件组成主要包括光源、CCD摄像头、装备有图像采集卡的计算机和单色仪。光源的波谱范围可以在紫外(200nm~400nm)、可见光(400nm~760nm)、近红外(760nm~2560nm)以及波长大于2560nm的区域。摄像头能接受从物体表面反射或透射来的光,并通过CCD传感器把光信号转换成电信号。CCD传感器分为线列(一次曝光获得一维图像信号)和面列(一次曝光获得二维图像信号)两种,后者比前者的成本高。图像采集卡把CCD得到的模拟信号转换成数字信号,并通过计算机显示出来。单色仪用来获得特定波长的光,特定波长的光可通过滤波器(滤波片)和图像光谱仪两种方式获得。因此,根据单色仪的不同,可以分为如下两种高光谱图像采集系统。
高光谱成像技术图像采集系统类型:
第一种是基于滤波器或滤波片的高光谱图像系统,如下图(a)所示。这种方法所采用的成像装置主要由CCD摄像头和可用于波长选择的元件组成。常用的波长选择元件有窄带滤波片、液晶可调式滤镜、声光可调式滤镜等。高光谱图像获取方法是:通过连续采集一系列波段条件下的样品二维图像,即在每个波长入 i(i = 1,2,3,...,n;其中n为正整数)得到一幅二维图像(横坐标为x,纵坐标为y),从而得到三维图像块(x,y,λ),如下图(b)所示。
第二种是基于光谱仪的高光谱图像系统,如下图(a)所示。这种成像装置主要由CCD摄像头和光谱仪组成。CCD摄像头采用线列探测器作为敏感元件。工作时,图像光谱仪将检测样品反射或透射来的光分成单色光源后进入CCD摄像头。该系统采用“扫帚式”成像方法得到高光谱图像。线列探测器在光学焦面的垂直方向作横向排列完成横向扫描(x轴向),可以获取对象条状空间中每个像素在各个波长条件的图像信息:同时在检测系统输送带前进过程中,排列的探测器就好像扫帚扫地一样扫出一条带状轨迹,从而完成纵向扫描(y轴向),综合横纵扫描信息就可得到样品的三维高光谱图像数据,如下图(b)所示。用此法在农畜产品品质与安全性检测时,使的检测生产线行进方向的样本尺寸不受CCD摄像头拍摄区间大小的限制,但此法成本较高。
相关产品
-
高光谱遥感技术在农作物监测中的应用
高光谱遥感农业研究已经逐渐成为现代农业研究中的重点,高光谱遥感影像具有光谱连续、波段多以及数据量大等特点,可为现代农业研究提供精准的技术手段。文章以农作物监测为..
-
植被的光谱特性是什么?植被的光谱特性介绍
地物的光谱特征是高光谱识别地物或检测特征的基础,其研究和意义在高光谱检测当中具有重要地位。同样,要检测农作物的生长状况或者其他特性,需要知道相应农作物的光谱特征..
-
岩矿高光谱遥感——矿石的光谱特征
高光谱遥感探矿主要根据矿石的光谱特征进行识别与分类,经研究发现矿石的光谱特征表现在不同种类的矿石具有诊断性的特征吸收峰存在,而决定这些特征吸收峰的因素主要为:(..
-
近红外光谱(NIRS)在茶叶检测中的应用
近红外光谱主要记录有机分子中含氢基团(C-H,N-H,0-H)振动的倍频与合频吸收,这些基团产生的吸收峰特征性强,便于判定和分析,目前已广泛应用于食品、医药、农..